Bacteriological profile and antibiotic sensitivity in Chronic Suppurative Otitis Media

Mary Nirmala S1*, Kumaresan S2

1Senior Assistant Professor, Govt. Thoothukudi Medical College & Hospital, Tamil Nadu, 2Associate Professor, Dept. of ENT, Govt. Theni Medical College & Hospital, Tamil Nadu

*Corresponding Author:
Email: nirmalasuganith@yahoo.com

Abstract
Chronic Suppurative Otitis Media is a chronic inflammation of middle ear presents with recurrent otorrhoea through a tympanic perforation, usually occurs after upper respiratory viral infections followed by invasion of pyogenic organisms. Our prospective study, conducted over a period of 10 months, includes ear discharge from 100 patients with chronic suppurative otitis media. Discharge collected in sterile swabs were sent immediately to microbiology laboratory and processed. Bacterial isolates were identified by standard methods and antibiotic susceptibility testing was done. Staphylococcus was the predominant organism followed by Pseudomonas sps., and Escherichia Coli. Most of the organisms were sensitive to Cefotaxime followed by Amikacin. The aim of the study on aerobic microbes and their anti-biogram pattern was to prepare a protocol for empirical antibiotic therapy based on the study to shorten the period of infection.

Keywords: Chronic suppurative otitis media, Bacterial isolates, Anti-biogram, Anti-biotic resistance.

Introduction
The diagnosis of chronic otitis media implies a permanent abnormality of pars tensa or flaccida most likely as a result of earlier acute otitis media, negative middle ear pressure or otitis media with effusion. It is common in children from poor economic status due to malnutrition, poor hygiene and overcrowding and in developing countries. The complications of chronic suppurative otitis media have been reduced to a greater extent because of the invention of antibiotics. But irrational use of antibiotics has lead to the emergence of resistant organisms to the commonly used drugs. Most of the studies have showed that the common organism isolated from cases of Chronic suppurative otitis media are Pseudomonas sps., Staphylococcus aureus and Proteus sps. Chronic suppurative otitis media has received considerable attention not only because of its high incidence, chronicity and complication, but also drug resistance and ototoxicity with both topical and systemic antibiotics.

Aim
- To isolate and identify the bacteria causing Chronic Suppurative Otitis Media in patients attending the ENT outpatient department.
- To determine the antibiotic sensitivity of the bacterial isolates.
- To correlate the results in relation to age and sex of the patients.

Inclusion criteria:
- Ear discharge taken only from those patients who had clinical diagnosis of Chronic Suppurative Otitis Media both tubo-tympanic and attico-antral type of disease.
- Only patients who had not received parenteral or topical antibiotics 6 weeks previously were taken in the study.
- All age groups of patients were included in the study.

Exclusion criteria:
- Patients who had mastoiditis.
- Patients who had treatment with antibiotics within 6 weeks.
- Patients having intra or extra cranial complications.
- Patients who had external otitis.
- Patients with bilateral ear discharge.
- Pregnant and lactating women.

Materials and Methods
The selected patients were subjected to detailed history taking and clinical examination. Informed written consent was taken. Ear discharge were collected from the selected patients under strict aseptic precautions using two sterile cotton swabs with the assistance of aural speculum and processed immediately in the microbiology laboratory. The first swab was used for direct Gram stain and the second swab was cultured in nutrient agar, blood agar and Mac conkey agar plates and incubated at 37°C for 24–48 hrs. The isolates grown were identified by their cultural characteristics, morphology and biochemical reactions. Antibiotic susceptibility testing of the organisms diagnosed was done by Kirby Bauer method in Muller Hinton agar. The plates were read after overnight incubation at 37°C by measuring the zone of inhibition around the antibiotic discs as per CLSI (Clinical Laboratory Standards Institute) guidelines.
Results

In our study out of 100 patients 63 were male and 37 were female. They are in an age group varying from 2-70 years with the maximum patients in the age group of 41-50 years (27%) (Table 1). In our study 85% were suffering from tubo-typanic type of chronic suppurative otitis media and 15% from attico-antral type. Right ear was affected in 54% patients and left ear in 46% in our study. Regarding symptoms, 100% of patients had discharge, 53% had impaired hearing, 4% had tinnitus and 12% had pain. On culture of the ear swab, infection with single organism was seen in 85% patients, with two organisms in 10% and no growth in 5% of the patients. Among the bacterial isolates Staphylococcus was 95% in the commonest, followed by Pseudomonas 25%, Escherichia coli 6%, Enterococci 4%, Proteus 4%, Klebsiella 3% Non-fermenting gram negative bacilli 1% and Citrobacter 1%. On observing the bacterial sensitivity pattern of Staphylococcus, we found that Vancomycin was 100% sensitive. Ceftriaxone 85%, Cefotaxime 85%, Netilmicin 82.5%, Amikacin 80%, Ofloxacin 67.5%, Cephalexin 60%, Erythromycin 57.5%, Ciprofloxacin 52.5%, Tetracycline 42.5%, Norfloxacin 40%, Gentamycin 37.5%, Amoxicillin 30%, Cotrimoxazole 27.5%, Cefazidime 22.5%. Pseudomonas aeruginosa was most sensitive to Cefpodoxime 68% followed by Amikacin 64%, Cefotaxime 64%, Ofloxacin 60%, Ceftriaxone 60%, Gentamycin 52%, Netilmicyn 48%, Cefazidime 48%, Norfloxacin 32%, Cephalexin 4%, Cotrimoxazole 4%. It was observed that most of the isolates were sensitive to Cefotaxime followed by Amikacin and Ceftriaxone and least sensitive to Amoxicillin and Cotrimoxazole. Cefotaxime is 100% effective in Proteus, Enterococci and Klebsiella infection, 85% in Staphylococcus and 64% in pseudomonas aeruginosa and 80% in Staphylococcus aureus infection.

Table 1: Age Distribution

<table>
<thead>
<tr>
<th>Age Group (Range in Years)</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>9</td>
<td>9%</td>
</tr>
<tr>
<td>11-20</td>
<td>25</td>
<td>25%</td>
</tr>
<tr>
<td>21-30</td>
<td>7</td>
<td>7%</td>
</tr>
<tr>
<td>31-40</td>
<td>17</td>
<td>17%</td>
</tr>
<tr>
<td>41-50</td>
<td>27</td>
<td>27%</td>
</tr>
<tr>
<td>51-60</td>
<td>10</td>
<td>10%</td>
</tr>
<tr>
<td>61-70</td>
<td>5</td>
<td>5%</td>
</tr>
</tbody>
</table>

Discussion

Bansal et al. and Micheal et al. have found that Chronic suppurative otitis media is common in pediatric age group. In the study we observed maximum prevalence of Chronic Suppurative Otitis Media in 41-50 years. This was consistent with other regional and international studies. While some other studies reported that Chronic Suppurative Otitis Media was seen in second decades of life. P. Talwar et al showed increased prevalence of Chronic suppurative otitis media below 20-27 years, while Loy et al. showed increased prevalence in 30-40 years. It was observed that males were affected more in our study. High incidence in males were also reported in Iqbal et al., Nwabwisi et al., Kumar et al., Shim et al., Wari so et al., Lodhi et al. and Yosuf et al. But this is in contrast to study done by Loy et al. and Mansoor et al., where female predominance was reported. Male predominance may be due to their more exposed way of life.

Main symptoms for which the patient returned to the hospital were discharge (100%), followed by impaired hearing (53%), tinnitus (4%) and pain (12%) (Table 2). In Rao study, the symptoms leading to the return of the patients were discharge in 100% followed by pain in 15% and tinnitus in 0.83%. In the present study, unilateral infection was predominant, in which right ear was more commonly affected (54%). This is similar to the study conducted by Shrestha et al. and Shymala et al. In our study 85% of patients were affected by tubo-typanic types of Chronic Suppurative Otitis Media and 15% by attico-antral type. Gulati et al. showed that 96.3% had central perforation and rest of the patients had unsafe variety.

Table 2: Symptoms

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>No</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge</td>
<td>100</td>
<td>100%</td>
</tr>
<tr>
<td>Impaired Hearing</td>
<td>53</td>
<td>53%</td>
</tr>
<tr>
<td>Tinnitus</td>
<td>4</td>
<td>4%</td>
</tr>
<tr>
<td>Pain</td>
<td>12</td>
<td>12%</td>
</tr>
</tbody>
</table>

In our study culture positive was 95% and 5% showed no growth. This is in accordance with Vijaya et al. in which 5.28% was sterile. Similar findings were observed with an incidence of 11-15% in Chaturvedi et al. and Siraj et al. studies. In Kenne et al. study, it was 2.1% and in Taneja et al. study it was 16% and 12.5% in Mohammed S Attah et al. Chakraborty et al. found 12.6%, Fathima et al. found 16.9% of culture negative samples. Culture positive was 95% in our study. Tammoy Dev et al. studies showed 52%, Nikakhlagh et al. showed 82%, Vikas Khanna et al. showed 84% and V.K. Poorey et al. showed 92%. In our study 85% was pure culture, 10% was mixed culture.

In Vikas Khanna et al. and V.K. Poorey et al. polymicrobial culture were 39% and 10% respectively. Mono bacterial growth was 85% in Agarwal et al. study which was similar to our study. High rate of pus cells in a study may be due to anaerobic culture not done and also possibility of viral agents.

Among the organisms Staphylococcus aureus formed the predominant isolates (40%) (Table 3). Many workers have also...
reported the same. The frequency of *Staphylococcus aureus* in middle ear can be attributed to the ubiquitous nature and high carriage of resistant strain in the external auditory canal and upper respiratory tract.\(^{(48)}\) *Pseudomonas aeruginosa* is the second predominant organism (25%) followed by *Escherichia Coli* 6%, *Proteus* 4% in the present study. On the contrary *Pseudomonas* was isolated as predominant agent by Gulati *et al.*,\(^{(14)}\) Kulkarni *et al.*,\(^{(46)}\) Gupta *et al.*,\(^{(43)}\) Fliss *et al.*,\(^{(49)}\) Kenne *et al.*,\(^{(27)}\) Taneja *et al.*,\(^{(28)}\) and Brooke *et al.*\(^{(50)}\) *Pseudomonas aeruginosa* and *Proteus* infection were considered mostly as secondary infection from the external canal entering the middle ear via perforated tympanic membrane.\(^{(51,52)}\)

Escherichia coli, Proteus, Enterococcus, and Klebsiella were the next commonly isolated organism in our study. Tulsidas showed *Proteus* as common isolate.\(^{(53)}\) *Diphtheroids* was isolated from 1% of the patients in our study. It has also been isolated from the middle ear by other workers.\(^{(44,54)}\) *Staphylococcus aureus*, an opportunistic pathogen and a normal flora of skin, but when it gains entry to the middle ear it results in infection of the middle ear cleft.\(^{(55)}\) In contrast predominant gram negative bacilli is consistent with many previous investigators, Gulati *et al.*,\(^{(14)}\) Goya *et al.*,\(^{(56)}\) Rajendra kumar *et al.*,\(^{(57)}\) Nene *et al.*,\(^{(58)}\) Fule *et al.*\(^{(59)}\) and Mishra *et al.*\(^{(60)}\)

Table 3: Organisms Isolated

<table>
<thead>
<tr>
<th>Organisms Isolated</th>
<th>No</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus Aureus</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Pseudomonas Aeruginosa</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>E.Coli</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Proteus</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Enterobacter</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Klebsiella</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Non-Fermenting Neg-Ve Bacilli</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Citrobacter</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Corynebacterium</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Staph.Aureus + Candida</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Staph.Aureus + Aspergillus</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E.Coli + Klebsiella</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E.Coli + Proteus</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Klebsiella + Pseudomonas</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>No Growth</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
It was observed that most of the organisms were sensitive to Cefotaxime, the same results as Gulati et al., Varshney et al. and Sinha et al. Cephalosporin and Quinolones are more effective than previously used penicillin and aminoglycosides.

Pseudomonas aeruginosa sensitivity to Ceftriaxone and Ciprofloxacin in our study was 64% and 68% respectively, in contrast to 78% and 100% in Fliss and Dagon study. In our study, Amikacin sensitivity to _Pseudomonas aeruginosa_ is only 64% in contrast to earlier reports which showed 100% sensitivity. For _Proteus_ infection Gentamycin is only 50% effective in our study whereas previous studies showed Gentamycin being the drug of choice in _Proteus_ infection. The effectiveness of Gentamycin on different bacteria has been reported by various written. Zaida et al. and Rao et al. were found to be very effective. In our study Gentamycin sensitivity to _Pseudomonas aeruginosa_ is 52% and to _Staphylococcus aureus_ is 37.5%, (Table 4) in contrast to Rao study where it was 84.6% and 92.15% respectively. Tetracycline showed poor results for organisms in the present study like the results of other workers.

Table 4: Antibiogram

Organisms	No of Patients	Amikacin	Amoxicillin	Cephalaxin	Cefotaxime	Ceftriaxone	Chloramphenicol	Ciproflox	Co-Trioxazole	Erythromycin	Gentamycin	Lincomycin	Nefloxacin	Norfloxacin	Ofloxacine	Tetracyline	Vancomycin	
Staphylococcus Aureus	40	32	12	24	34	9	34	30	21	11	23	15	38	33	16	27	17	40
Pseudomonas Aeruginosa	25	16	-	1	16	15	12	7	17	1	-	13	-	12	8	15	2	-
E.Coli	6	5	-	2	3	3	4	4	4	-	3	-	4	-	3	1	-	
Enterococcus	4	4	-	2	4	3	3	1	4	1	2	-	3	3	3	3	-	
Proteus	4	4	-	-	4	4	2	4	4	-	3	-	4	4	1	-		
Klebsiella	3	3	-	2	3	2	3	2	3	-	3	3	3	2	-			
NFGNB	1	-	-	-	1	-	-	1	-	-	-	1	-	-	-	-	-	
Citrobacter	1	-	-	-	-	1	1	1	-	-	-	-	-	-	-	1	-	
Cornye Bacterium	1	-	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	
Total	85	64	12	31	66	27	60	48	54	20	-	39	38	59	30	56	23	40
Conclusion
Staphylococcus aureus was the most common isolates and it being most sensitive to Vancomycin, followed by Lincomycin and Cefotaxime. For overall bacterial isolates Cefotaxime was found to be the most effective drug. To conclude, it is imperative to have the knowledge of causative organisms in Chronic suppurative otitis media and their sensitivity pattern for appropriate management to prevent morbidity and mortality.

References
42. Constable L and Butler I. 1982 microbiological flora in chronic otitis media: journal of infection;5:57-60.
43. Gupta Vineeta; Gupta Abhay; Sivarajan K. Chronic suppurative otitis media. Media Aerobic Microbiological Study Indian Journal Vol 4;No2; June 98-79-82.
60. Mishra Anupam, Shukla Girish, Nag Devika. Mishra Subhash Chandra; Bacteriological Study Of chronic suppurative otitis media. VOL5, No 2(June 99);87-91.